Energize your beef ration by choosing the right corn hybrid

Improve the profit potential of your feedlot – it’s as simple as planting a hybrid that provides more potential value in the field and in your feed.

Unique Enogen® Feed hybrids do just that, offering proven genetics and strong agronomic characteristics in the field. And in your ration, a step-change in starch and sugar availability provides more available energy to feedlot cattle.

Benefits in the field
- Excellent yield potential across a variety of soil types and conditions
- Proven genetics and traits
- No additional agronomic management challenges¹, unlike some silage-specific hybrids
- Flexibility to chop for silage or harvest for grain
- Performs equal to or better than other high-performing hybrids².

Unlock the energy potential of your ration – simply incorporate Enogen Feed hybrids in your feedlot operation.

It’s as easy as replacing the corn or silage you currently grow and feed.

Energy is a key component to maximizing beef production, and corn is an important energy source. Corn supplies starch, that is converted to sugar, which ultimately delivers energy to feeder cattle.

¹Growers must comply with specific yet simple stewardship requirements.
²Syngenta production data from more than 1 million acres, 2012-2016.
Starch is a key component in energy production – higher levels of starch digestibility allow the cattle to utilize more starch from the same amount of feed. A high-quality ration that maximizes the use of available starch will help maximize energy.

More available energy means greater profit potential for your feedlot operation.

Research Data
Research on Enogen Feed corn as dry-rolled corn showed:

Enogen Feed corn did not statistically impact starch digestibility in the rumen.

Enogen Feed corn increases the potential for a higher percentage of post-ruminal starch digestibility.

Post-ruminal digestibility: 24.6% increase

No significant effects on ruminal pH were observed in this study.

Post-ruminal digestibility is a measure of the level of digestibility that occurs in the small intestine. Available energy supply is greater when starch is digested in the small intestine.
Enogen Feed corn can increase total tract digestibility of starch. **Total tract digestibility: 4.1% increase**

Enogen Feed corn results in **decreased fecal starch output**, which means more of the consumed starch may be **converted to energy**. **Fecal output: 38% decrease**

Total tract digestibility is the digestion of starch both in the rumen and post-ruminally (in the small intestine).

Digestible energy is intake energy (energy available in the ration) minus what is lost in the feces, and serves as an indicator of a ration’s energy value. Fecal output represents loss of potential digestible energy. Decreased fecal output indicates increased starch digestibility and better utilization and more complete digestion of the feed ration, for maximum energy potential.

Learn more about the University of Nebraska research

To read the research reports on enhanced digestibility of Enogen Feed corn published by the University of Nebraska, refer to the finishing section of the *2016 Nebraska beef report* and look for studies on Syngenta Enhanced Feed Corn.

Contact the researchers who conducted these studies

Galen Erickson, Ph.D.
University of Nebraska-Lincoln
Nebraska Cattle Industry
Professor of Animal Science
Lincoln, NE
402-472-6402 (work)
402-450-6314 (mobile)
gerickson4@unl.edu

Matt Luebbe, Ph. D.
University of Nebraska-Lincoln
Extension Feedlot Specialist
Scottsbluff, NE
308-632-1397 (work)
402-480-0306 (mobile)
mluebbe2@unl.edu
Research on Enogen Feed as silage showed:

Enogen Feed silage may enable greater starch availability.
Small particle starch: 199.5% increase
Starch digestion: 14% increase

Enogen Feed silage may provide higher levels of available sugar.
Total sugars: 201% increase

Two determining factors in starch availability are particle size and digestibility. The chart above shows a comparable level of starch between Enogen Feed silage and other corn silage, but with a higher level of small particle starch, which is more rapidly available in the rumen, providing more immediately available energy.

Additionally, research shows a higher level of in situ starch digestion after 7 hours (isSD7) which indicates better digestibility of available starch with Enogen Feed silage. The in situ method measures the disappearance of feeds incubated in a porous bag within the rumen.

When incorporating silage in the ration, starches and sugars remain important energy contributors. A high-quality silage that maximizes the use of available starch and sugar will help maximize energy in your ration.

Contact your Syngenta representative to learn more about how Enogen Feed hybrids can help you maximize your feedlot operation. As a high-value output product, Enogen Feed corn must be grown as an identity preserved crop and fed on-farm only. Growers must adhere to all applicable stewardship requirements, and sign and comply with an Enogen contract with Syngenta.